小尺寸环形气体激光器增益损耗比特性

樊振方*,徐小清,谭中奇,李成聪

国防科技大学前沿交叉学科学院,湖南长沙 410073

摘要 增益损耗比是气体激光器的重要工作参量之一,它对激光陀螺的整体设计和实际性能有很大的影响。小尺 寸环形气体激光器具有较宽的模间隔,为这一参数的测量提供了便利。根据理论推导,得出增损比的简化计算公 式。提出一种测量增损比的实验方法,并对大批量的激光器进行实验研究。实验结果表明,在现有的高水平光学 加工工艺和调腔精度下,环形激光器的平均增益损耗比已经达到 3.55。

关键词 激光器;激光陀螺;增益损耗比;出光带宽

中图分类号 TN212.14 文献标识码 A

doi: 10.3788/CJL201946.1101010

Gain-Loss Ratio of Small Ring Lasers

Fan Zhenfang*, Xu Xiaoqing, Tan Zhongqi, Li Chengcong

College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China

Abstract Gain-loss ratio is an essential parameter of gas lasers and has a substantial effect on the design and performance of ring laser gyroscopes. Small ring gas lasers have wide mode spacing; therefore, it is convenient to measure the gain-loss ratio. A simple formula for calculating the gain-loss ratio is derived theoretically. Then, an experimental method is proposed to measure this parameter, and experiments are conducted for a large number of lasers. Results show that by taking advantage of precise optical machining and cavity alignment, the average gain-loss ratio of a ring laser can reach up to 3.55.

Key words lasers; laser gyro; gain-loss ratio; output bandwidth OCIS codes 140.3370; 140.3410; 140.3460

1 引 言

以 Sagnac 效应为基本原理的激光陀螺是一种 角运动传感器,它的基本结构是一个环形激光 器^[1-5]。环形激光器的特性对激光陀螺的性能有着 重要的影响,其中增益损耗比(以下简称"增损比") 是环形激光器的一个重要的基本参量。工程上一般 采用直流放电作为抽运源使原子产生受激辐射^[6]。 环形激光器采用 He-Ne 混合气体作为增益介质,由 于 Ne 直接受激跃迁的效率较低,He 受激跃迁后可 通过共振将能量转移给 Ne,提高 Ne 原子的翻转粒 子数密度^[6]。为了避免相向运行光波的模竞争,将 Ne 元素的 Ne²⁰和 Ne²²双同位素近似等比掺杂^[5]。 对于仪表用环形激光器而言,一般不追求很大的功 率输出,通常运行在小信号模式下,高压抽运电流一 般控制在 2 mA 以下。

增损比和光学器件的加工水平息息相关^[7-9],同时也与毛细孔直径、光阑尺寸和直径等腔参数有关^[10]。激光器的损耗主要包括透射损耗、衍射损耗、几何偏折损耗、腔内器件的吸收与散射^[6]。环形激光器的透射损耗主要是由反射镜的反射不完全导致的,衍射损耗主要由光阑引起;在调腔比较好的情况下,几何偏折损耗一般可以忽略。为了减小不必要的损耗以及其他的衍生效应,应极力避免在环形激光器腔内安装器件^[11-12]。损耗越大,环路的损耗 非均匀性和综合背向散射均越强,激光陀螺的锁区也就越大。因此,减小锁区是将环形激光器应用于 激光陀螺的首要解决的问题^[13-17]。激光陀螺精度提

收稿日期: 2019-06-18; 修回日期: 2019-07-10; 录用日期: 2019-07-22

基金项目:国防科技大学校预研项目(ZK16-03-02,ZK16-03-21)、湖南省科技项目(2016GK2002)

^{*} E-mail: nudtfzj@126.com

升的过程,就是同损耗作斗争的过程。

一般情况下,可通过出光带宽的方法测量增损 比^[5]。但是随着光学加工技术的发展,损耗降低,尺 寸偏大的环形激光器一般不存在无光区,在进行频 率调谐时会出现多纵模同时起振的区间^[18],如此一 来增损比的测量就比较困难。小尺寸环形激光器的 本征频率间隔较大,一般不会出现多纵模或者高阶 横模振荡^[14],扫模曲线存在一段无光区,为增损比 的测量带来了便利。本文通过公式推导,得到了较 为简单的增损比计算公式,并对大批量陀螺的增损 比进行测量,结果显示增损比的均值为 3.55,这充分 说明光学加工水准显著提升,增损比随之增大,环形 激光陀螺的精度也得到大幅提升。而增损比的提高 也对激光器的高压抽运电流提出了新的要求。

2 增损比的相关理论

环形气体激光器的核心是一个高度密封的腔体,整体由微晶玻璃材料制成。其结构如图1所示, 由四面反射镜和毛细管形成一个环形的光路,腔内 将产生顺时针、逆时针的两路行波。

图 1 环形激光器结构示意图 Fig. 1 Diagram of ring laser structure

在不考虑环路非均匀损耗和散射的情况下,激 光陀螺顺时针、逆时针光强的表达式为^[5]

$$\frac{L}{c}I_{1} = (\alpha_{1} - \beta_{1}I_{1} - \theta_{12}I_{2})I_{1}, \qquad (1)$$

$$\frac{L}{c}I_{2} = (\alpha_{2} - \beta_{2}I_{2} - \theta_{21}I_{1})I_{2}, \qquad (2)$$

式中:I(下标 1 代表顺时针光, 2 代表逆时针光, 下同)为顺时针、逆时针光的无量纲光强;<math>L为光学腔长;c为光速; α 、 β 、 θ 为兰姆系数; \dot{I}_1 、 \dot{I}_2 为光强的时间变化率; α_1 、 α_2 , β_1 、 β_2 , θ_{12} 、 θ_{21} 分别为"1","2"行波的单程净增益系数、自饱和系数、互饱和系数。激光陀螺的增益介质为 He-Ne 混合气体,其中 He 原子起到共振转移的作用,真正的增益介质为 Ne 原子,它从 3S₂能级到 2P₄能级的跃迁产生 0.6328 μ m 的谱线。在环形激光器中为了避开模竞争, 一般采用

等比例混合的 Ne²⁰ 和 Ne²² 双同位素。兰姆系数 α 为单程净增益,其值等于单程增益减去单程损耗,在 单同位素情况下^[5]有

$$\alpha = g Z_i(\xi) - \gamma, \qquad (3)$$

式中:Z_i(ξ)为等离子色散函数的虚部;g 为峰值增 益的比值;γ 为单程损耗;ξ 为频率参量,它是实际 工作频率与增益介质中心频率失谐频差的多普勒归 一化。系数 g 为^[5]

$$g = \frac{G_0}{Z_1(0)},\tag{4}$$

式中:G₀为单同位素的单程增益峰值。在等比双同 位素情况下,忽略 Ne²⁰和 Ne²²原子质量的差异,选 取二者谱线的中点为坐标原点,则单程净增益系数 可以表示为^[5]

$$\alpha = \frac{g}{2} [Z_i(\xi + 0.44) + Z_i(\xi - 0.44)] - \gamma_{\circ} (5)$$

利用等离子色散函数的虚部为偶函数的特性, 令 $\xi=0$,可以得到双同位素的增益峰值 G_m :

$$G_{\rm m} = \frac{g}{2} [Z_{\rm i}(0.44) + Z_{\rm i}(-0.44)] = g Z_{\rm i}(0.44) \,.$$
(6)

在(5)式中, $\alpha \ge 0$ 的区间为出光区间。假设出 光阈值点,即由出光转熄灭的位置,所对应的频率参 量为 ξ_0 ,则满足

$$\frac{g}{2} [Z_i(\xi_0 + 0.44) + Z_i(\xi_0 - 0.44)] - \gamma = 0.$$
(7)

从(7)式可以得到单程损耗为

$$\gamma = \frac{g}{2} [Z_i(\xi_0 + 0.44) + Z_i(\xi_0 - 0.44)]_{\circ} \quad (8)$$

将(6)式除以(8)式,可以得到增损比:

$$\frac{G_{\rm m}}{\gamma} = \frac{2Z_{\rm i}(0.44)}{Z_{\rm i}(\xi_0 + 0.44) + Z_{\rm i}(\xi_0 - 0.44)} \,. \tag{9}$$

等离子色散函数原是和气压参数相关的,但实验所采用陀螺的气压为固定值,因此气压引起的影响就可以忽略,此时等离子色散函数只有频率参量 一个变量。只要将得到的阈值频率参量 *ξ*。代入(9)式,就可以得到增损比。

环形激光器的纵模间隔 Δu 为

$$\Delta v = \frac{c}{nL},\tag{10}$$

式中:n 为介质的折射率。

当腔长 L 较大时,模间隔 Δυ 较小,进行腔长调 谐时,往往无法获得无光区,这就增大了增损比实时 在线测量的难度。但是对于小尺寸的环形激光器, 由于其模间隔比较宽,在腔长调谐过程中容易探测 到无光区,从而方便测量增损比。

3 增损比测定实验方法

定义出光系数 ζ 为

$$\zeta = \Delta v_{\rm on} / \Delta v , \qquad (11)$$

式中: Δυ_{on}为出光带宽。出光系数 ζ<1 表示出光带 宽小于纵模间隔,此时陀螺的扫模信号中存在无光 区。当腔长较大时,纵模分布比较紧凑,频率调谐过 程中一个纵模没有熄灭,另一个纵模又会产生,因此 不存在无光区。当腔长较小时,只有纵模间隔比较 大,才有可能观察到无光区。出光阈值对应的频率 参量为^[5]

$$\boldsymbol{\xi}_{0} = \frac{1}{2} \, \frac{\Delta \boldsymbol{v}_{\text{on}}}{\boldsymbol{k}_{u}} = \left(\frac{1}{2} \, \frac{\Delta \boldsymbol{v}}{\boldsymbol{k}_{u}}\right) \boldsymbol{\zeta} \,, \tag{12}$$

式中:ku为多普勒展宽。

对于腔长为 8.4 cm 的环形激光器,其模间隔

 Δv 为 3.57 GHz,多普勒展宽 k_u 约为 1 GHz。因此 有 $\xi_0 \approx 1.78 \zeta$,将其代入(9)式可以得到

$$\frac{G_{\rm m}}{\gamma} = \frac{2Z_{\rm i}(0.44)}{Z_{\rm i}(1.78\zeta + 0.44) + Z_{\rm i}(1.78\zeta - 0.44)} \,^{\circ}$$
(13)

由(13)式可知,如果已知每个陀螺的出光系数, 就可以通过(13)式得到陀螺的增损比,而出光系数 很容易通过扫模曲线得到。

图 2 所示为陀螺的扫模曲线。通过在环形激光 器的腔长调谐器(一般采用压电陶瓷)施加扫描电压 就可以得到陀螺的扫模曲线,通过对该曲线进行分 析就可以得到出光系数。V_{ON}表示一个纵模的电压 范围,V_{MW}表示两纵模间的电压范围。显然 Δυ_{on} ∞ V_{ON}, Δυ ∞V_{MW}, 因此(11)式中的出光带宽可以转 换为

$$\zeta = \frac{\Delta v_{\text{on}}}{\Delta v} = \frac{V_{\text{ON}}}{V_{\text{MW}}}.$$
 (14)

Fig. 2 Mode-sweep curve

表 1 各样本的出光系数和增损比 Table 1 Lasing coefficient and gain-loss ratio of each sample

至此,抽象的出光带宽就可以转换为实际可测的电压信号量。增损比的计算步骤如下:

- 1) 对环形激光器进行扫模,得到 V_{ON}和 V_{MW};
- 2)由(14)式得到出光系数 ζ;
- 3) 将 ζ 代入(13) 式得到增损比。

4 实验数据及其讨论

激光器的参数会存在个体差异,为了得到该尺 寸环形激光器增损比的整体情况,采集了 30 个样本 进行测量。通过上述方法可以得到每个环形激光器 的出光系数和增损比,如表 1 所示。

表 1 中 $\zeta \ge 1$ 对应于扫模曲线中没有无光区的 情形,此时只能判断出其增损比大于 4.2,但不能得 到其具体值。通过对以上样本进行统计分析(将 $\zeta \ge 1$ 的情形按 $\zeta = 1$ 计算),可知增损比的平均值为 3.55,标准差为 0.39。

No.	ζ	$G_{ m m}/\gamma$	No.	ζ	$G_{ m m}/\gamma$
1	0.9661	3.85	16	0.8914	3.20
2	0.9142	3.38	17	0.9118	3.36
3	0.9241	3.47	18	0.8940	3.22
4	0.9148	3.39	19	0.9750	3.94
5	0.9778	3.97	20	0.9539	3.74
6	0.8746	3.07	21	0.8353	2.80
7	0.9779	3.97	22	$\geqslant 1$	≥4.20
8	0.8803	3.11	23	0.9557	3.75
9	$\geqslant 1$	≥4.20	24	0.9087	3.34
10	0.9507	3.71	25	0.8421	2.84
11	0.9294	3.51	26	0.9319	3.53
12	0.9409	3.62	27	0.9781	3.97
13	0.9772	3.96	28	0.8912	3.20
14	0.8496	2.89	29	0.9530	3.73
15	0.9662	3.85	30	0.9414	3.62

在早期的文献中,增损比略微大于1^[5]。相比 之下,3.55的实测增损比表明增益已经远大于损 耗,这说明现代光学加工技术已经有了很大的进步, 超光滑表面加工和超高反射率镀膜水平有了实质飞 跃,使得环形激光器内部的损耗明显减小,这也是以 环形激光器为基础的激光陀螺精度大幅提高的主要 原因。这主要得益于两个方面:一方面是环路的非 均匀性和综合背向散射减小,使得锁区减小;另一方 面是损耗的减小进一步减小了量子噪声,压缩了量 子极限。

增损比的提升也会对工作参量产生一定的影 响,其中影响最为明显的是工作电流。在增损比较 大的情况下,光强基本上会随着工作电流的增大呈 线性变化。如果抽运电流太大,电路损耗也较大,同 时激光器的热梯度效应比较明显,激光陀螺中会出 现零位漂移。损耗的减小意味着工作电流可以随之 减小,以往工作电流在1 mA 左右,现在只需要 0.4 mA左右。在腔长较长的环形激光器中,纵模间 隔比较小,极低的损耗容易造成两个或以上的多纵 模同时振荡,这也要求工作电流不能太大。当增损 比增大时,容易出现高阶横模^[19],这在激光陀螺中 是不允许的,因此对光阑的参数设计提出了新的要 求,在保证衍射损耗较小的情况下要能有效抑制高 阶横模的产生。

图 3 为表 1 中增损比的统计分布直方图。可以 看出,增损比分布比较集中,主要集中在 3~4 之间。 当 ζ≥1 时,只能判断出其增损比是大于 4.20 的,但 从分布图可以看出其增损比不会偏离 4.2 很远。

Fig. 3 Histogram of gain-loss ratio

5 结 论

增损比是环形激光器的一个重要的工作参量, 它既和光学器件的技工水平相关,又和谐振腔设计 参数(例如毛细孔直径和光阑大小等)相关。运用小 尺寸环形激光器纵模间隔较大,存在无光区的特性, 实现了增损比测量。通过公式推导,得到了简化的 增损比计算公式。对批量化陀螺的增损比进行了测 量,结果显示增损比均值为3.55,这充分说明了现在 的光学加工水准已得到了极大提升。高的增损比是 环形激光陀螺获得较高精度的重要原因,而增损比 提高的同时也要求对激光器的高压抽运电流大小进 行重新考量。

参考文献

- Post E J. Sagnac effect [J]. Reviews of Modern Physics, 1967, 39(2): 475-493.
- [2] Chow W W, Gea-Banacloche J, Pedrotti L M, et al. The ring laser gyro[J]. Reviews of Modern Physics, 1985, 57(1): 61-104.
- Chow W W, Hambenne J, Hutchings T, et al.
 Multioscillator laser gyros [J]. IEEE Journal of Quantum Electronics, 1980, 16(9): 918-936.
- [4] Gao B L, Li S T. Laser gyro [M]. Changsha: National University of Defense Technology Press, 1984.
 高伯龙,李树棠.激光陀螺[M].长沙:国防科技大 学出版社, 1984.
- [5] Jiang Y N. Ring laser gyro [M]. Beijing: Tsinghua University Press, 1985.
 姜亚南.环形激光陀螺 [M].北京:清华大学出版 社, 1985.
- [6] Zhou B K, Gao Y Z, Chen T R, et al. Laser principle [M]. 6th ed. Beijing: National Defense Industry Press, 2010.
 周炳琨,高以智,陈倜嵘,等.激光原理[M].6版. 北京:国防工业出版社,2010.
- Yang K Y, Long X W. Design of high-precision, large-angle inciden, nonpolarization anti-reflection coatings[J]. Chinese Journal of Lasers, 2002, 29 (8): 703-706.

杨开勇, 龙兴武. 非偏振大角度高精度减反膜的设计 [J]. 中国激光, 2002, 29(8): 703-706.

- [8] Yang K Y, Wei Z M, Long X W, et al. Lightscattering characterization of transparent substrates for laser-gyro application [J]. Proceedings of SPIE, 2011, 8192: 81920F.
- [9] Yang K Y, Zhao H C, Jia Y F, et al. Comparative research on different solutions of a high-performance thin-film polarizing beam splitter [J]. Advanced Materials Research, 2012, 580: 134-140.
- [10] Fan Z F, Luo H, Lu G F, et al. Beam characteristics of square ring laser gyro [J]. Laser Technology, 2012, 36(5): 617-619.

樊振方,罗晖,卢广锋,等.四边形激光陀螺的光束 特性[J].激光技术,2012,36(5):617-619.

- [11] Lu G F, Fan Z F, Hu S M, et al. Mirrors movement-induced equivalent rotation effect in ring laser gyros [J]. Optics Express, 2013, 21 (12): 14458-14465.
- [12] Wang Z G. Bias characteristics of four-mode differential laser gyroscope with nonplanar cavity and its electronic system design[D]. Changsha: National University of Defense Technology, 2010.
 汪之国.异面腔四频差动激光陀螺的零偏特性与电子系统设计[D].长沙:国防科技大学, 2010.
- [13] Fan Z F, Luo H, Lu G F, et al. Dynamic lock-in compensation for mechanically dithered ring laser gyros [J]. Chinese Optics Letters, 2012, 10 (6): 061403.
- [14] Fan Z F, Luo H, Lu G F, et al. A new noise injection effectiveness evaluation method for ring laser gyro[J]. Chinese Journal of Lasers, 2012, 39(2): 0202006.

樊振方,罗晖,卢广锋,等.一种新的激光陀螺抖动 加噪效果评估方法[J].中国激光,2012,39(2): 0202006.

- [15] Fan Z F, Luo H, Hu S M. Self phase lock dither stripping technique in mechanical dithered ring laser gyro[J]. Chinese Journal of Lasers, 2011, 38(4): 0409001.
 樊振方,罗晖,胡绍民. 二频机抖陀螺的自锁相抖动 剥除[J]. 中国激光, 2011, 38(4): 0409001.
- [16] Spreeuw R J C, Neelen R C, van Druten N J, et al. Mode coupling in a He-Ne ring laser with backscattering[J]. Physical Review A, 1990, 42(7): 4315-4324.
- [17] Etrich C, Mandel P, Centeno Neelen R, et al. Dynamics of a ring-laser gyroscope with backscattering[J]. Physical Review A, 1992, 46(1): 525-536.
- [18] Kogelnik H, Li T. Laser beams and resonators [J]. Proceedings of the IEEE, 1966, 54(10): 1312-1329.
- [19] Wang P G, Zhang Z G, Ye P. Measurement and analysis of transverse modes characteristic of laser gyro resonator[J]. Acta Photonica Sinica, 2015, 44 (4): 0414003.
 王朋国,张自国,叶萍.激光陀螺谐振腔横模特征的 测量与分析[J].光子学报, 2015, 44(4): 0414003.